Crane Manufacturer

A crane is a machine that is capable of raising and lowering heavy objects and moving them horizontally. Crane manufacturer cranes are distinguished from hoists, which can lift objects but that cannot move them sideways. Cranes are also distinguished from conveyors, that lift and move bulk materials, such as grain and coal, in a continuous process. The word crane is taken from the fact that these machines have a shape similar to that of the tall, long-necked bird of the same name.

Human beings have used a wide variety of devices to lift heavy objects since ancient times. One of the earliest versions of the crane to be developed was the shaduf, first used to move water in Egypt about four thousand years ago. The shaduf consists of a long, pivoting beam balanced on a vertical support. A heavy weight is attached to one end of the beam and a bucket to the other. The user pulls the bucket down to the water supply, fills it, then allows the weight to pull the bucket up. The beam is then rotated to the desired position and the bucket is emptied. The shaduf is still used in rural areas of Egypt and India.

As early as the first century, cranes were built that were powered by human beings or animals operating a treadmill or large wheel. These early cranes consisted of a long wooden beam, known as a boom, connected to a rotating base. The wheel or treadmill powered a drum, around which a rope was wound. The rope was connected to a pulley at the top of the boom and to a hook that lifted the weight.

An important development in crane design occurred during the Middle Ages, when a horizontal arm known as a jib was added to the boom. The jib was attached to the boom in a way which allowed it to pivot, allowing for an increased range of motion. By the sixteenth century, cranes were built with two treadmills, one on each side of a rotating housing containing the boom.

Cranes continued to rely on human or animal power until the middle of the nineteenth century, when steam engines were developed. By the end of the nineteenth century, internal combustion engines and electric motors were used to power cranes. By this time, steel rather than wood was used to build most cranes.

During the first half of the twentieth century, European and American cranes developed in different ways. In Europe, where most cranes were used in cities with narrow streets, cranes tended to be built in the form of tall, slender towers, with the boom and the operator on top of the tower. Because quiet operation was important in crowded cities, these tower cranes were usually powered by electric motors when they became widely available.

In the United States, cranes were often used in locations far away from residential areas. Cranes tended to be built with the boom connected to a trolley, which could be moved easily from place to place. These mobile cranes tended to be powered by internal combustion engines. During the 1950s, the availability of stronger steels, combined with an increased demand for taller buildings, led to the development of cranes with very long booms attached to small trucks, or to crawlers with caterpillar treads. Mobile cranes and tower cranes of many different kinds are used extensively in construction sites around the world.

Raw Materials

The most important substance used to manufacture cranes is steel. Steel is an alloy of iron and a small amount of carbon. For structures that do not require very high strength, a common form of steel known as carbon steel is used. By definition, carbon steel contains less than 2% of elements other than iron and carbon. Carbon steel exists in a wide variety of forms. The most important factor in determining the properties of carbon steel is the amount of carbon present, which ranges from less than 0.015% to more than 0.5%.

For structures that require great strength, particularly in cranes designed to lift very heavy objects, a variety of substances known as high-strength low-alloy (HSLA) steels are used. HSLA steels contain relatively low levels of carbon, typically about 0.05%. They also contain a small amount of one or more other elements that add strength. These elements include chromium, nickel, molybdenum, vanadium, titanium, and niobium. Besides being strong, HSLA steels are resistant to atmospheric corrosion and are better suited to welding than carbon steels.

Depending on the exact design of the crane, a wide variety of other materials may be used in manufacturing. Natural or synthetic rubber is used to make tires for mobile cranes. Certain structural components may be manufactured from various metals such as bronze and aluminum. Electrical components may include copper for wires and semiconducting elements such as silicon or germanium for electronic circuits. Other materials that may be used include ceramics and strong plastics.

Design

Very few machines exist in as wide a variety of designs as cranes. Before the crane is constructed, the manufacturer must consider the site where it will be used and the weight it will need to lift. In addition, cranes are often modified to suit the needs of the user. For these reasons, it is not much of an exaggeration to say that no two cranes are exactly alike.

Cranes used for industrial purposes are generally designed to remain permanently in one location. These cranes often perform repetitive tasks that can be automated. An important type of industrial crane is the bridge crane. Traveling on tracks attached to two horizontal beams, known as a bridge, a trolley enables the movement of the bridge crane. Usually, the bridge itself can be moved along a pair of parallel rails, allowing the crane to reach a large, rectangular area. A bridge crane may also be designed so that one end of the bridge is supported by a central pivot while the other end moves on a circular rail, allowing a large, round area to be reached.

An overhead traveling crane is a kind of bridge crane in which the rails are located high above the ground. Usually supported from the ceiling of a building, an overhead traveling crane has the advantage of causing no obstruction in the work area.

Cranes used in construction often perform a variety of tasks and must be controlled by highly skilled operators. Construction cranes are divided into mobile cranes and tower cranes. Mobile cranes are mounted on trucks or crawlers in order to travel from place to place. An articulating crane is a mobile crane in which there is a joint between two sections of the boom, allowing it to move in a way similar to a knuckle in a human finger. Articulating cranes are generally used to lift objects located a relatively short distance away, but with a wide range of motion. A telescoping crane is a mobile crane in which two or more sections of the boom can extend and retract, changing the length of the boom. Telescoping cranes are less versatile than articulating cranes, but are usually able to lift heavier objects located a greater distance away.

Tower cranes are used in the construction of tall buildings. They are installed when construction begins and dismantled when the building is completed. An external tower crane is installed outside the building. As the building increases in height, the crane is raised by lifting the upper part of the crane and adding a new section of tower beneath it. An internal tower crane is installed within the building. As the building increases in height, the crane is raised by lifting the base of the crane to a higher level within the building..

JST's mobile crane loading timber. by petrafjord

A mobile crane.

 

The Manufacturing 
Process – crane manufacturer

Making steel components

  • 1 Molten steel is made by melting iron ore and coke (a carbon-rich substance that results when coal is heated in the absence of air) in a furnace, then removing most of the carbon by blasting oxygen into the liquid. The molten steel is then poured into large, thick-walled iron molds, where it cools into ingots.
  • 2 In order to form flat products such as plates and sheets, or long products such as bars and rods, ingots are shaped between large rollers under enormous pressure. Hollow tubes, such as those used to form the latticed booms of large cranes, may be made by bending sheets of steel and welding the long sides together. They may also be made by piercing steel rods with a rotating steel cone.

     

    Brooklyn Bridge | Looking West by lucas_roberts426

    An external tower crane.

     

  • 3 The cables used to lift weights are made from steel wires. To make wire, steel is first rolled into a long rod. The rod is then drawn through a series of dies which reduce its diameter to the desired size. Several wires are then twisted together to form cable.
  • 4 Steel arrives at the crane manufacturer and is inspected. It is stored in a warehouse until it is needed. The many different components that will later be assembled into cranes are made using a variety of metalworking equipment. Lathes, drills, and other precision machines are used to shape the steel as required.

Assembling the crane

  • 5 A crane is put together from the necessary components. As the crane moves along the assembly line, the steel components are welded or bolted into place. The exact procedures followed during this process vary depending on the type of crane being assembled. For a mobile crane, the components are then assembled to a standardized truck or crawler of the appropriate type.
  • 6 The assembled crane is tested and shipped. Depending on the size and type of crane, it may be broken down into subsections to be assembled on site. It may also be shipped whole on special large trucks.

Quality Control

Safety is the most important factor to be considered during crane manufacturing. The steel used to make the crane is inspected to ensure that it has no structural flaws that would weaken the crane. Welds and bolts joints are inspected as well.

Wicken Windmill by ♫ Claire ♫

An internal tower crane.

 

The United States government sets specific regulations through the Occupational Safety and Health Administration that limit the weight that a specific crane is allowed to lift. The Crane Manufacturers Association of America sets its own safety standards which exceed those required by the government. Special devices within the crane prevent the user from attempting to lift a weight heavier than that allowed.

A completed crane is first tested without a weight to ensure that all of its components operate properly. It is then tested with a weight to ensure that the crane is able to lift heavy objects without losing stability.

Safety ultimately depends on proper use of the crane. Crane operators must be specially trained, must pass specific tests, and must be examined for any visual or physical problems. The crane should be inspected each working shift, with a more thorough inspection of the motor and lifting apparatus on a monthly basis. Crane operators must be aware of changes in the environment in order to avoid accidents. For example, cranes should not be used during very windy conditions.

The Future

Manufacturers of cranes i.e. crane manufacturer are constantly seeking new ways to incorporate new technology into their products. Future cranes will have improved safety and versatility with computers and video screens that will allow operators to move heavy objects with increased accuracy.

Signs of the future can be seen in an unusual crane recently developed by James S. Albus, of the National Institute of Standards and Technology in Gaithersburg, Maryland. The Stewart Platform Independent Drive Environmental Robot (SPIDER) looks nothing like an ordinary crane. Instead, the SPIDER is shaped like an octahedron (a diamond-shaped solid consisting of eight triangles joined together in the form of two four-sided pyramids). Six pulleys support six cables from the top level of the SPIDER. The cables manipulate the lower level of the SPIDER, which is attached to tools or grip devices. The six cables can be operated together or independently, allowing the lower level to be moved in all directions. The SPIDER can lift heavy objects to within 0.04 in (1 mm) of the desired location, and hold them within one-half of a degree of the desired angle. The SPIDER can lift up to six times its own weight.

 

Where to Learn More

Books

Jennings, Terry. Cranes, Dump Trucks, Bulldozers, and Other Building Machines. Kingfisher Books, 1993.

Shapiro, Howard I. Cranes and Derricks. McGraw-Hill, 1980.

Periodicals

“The Crane: A Versatile Truck-Mounted Tool.” Public Works (November 1988): 62-63.

Shapiro, Lawrence K. and Howard I. “Construction Cranes.” Scientific American (March 1988): 72-79.

Other

“Cranes.” April 21, 1998. (June 29, 1999).

— Rose Secrest

Crane Hire & Crane Manufacturers

Truck-mounted crane

A crane mounted on a truck carrier provides the mobility for this type of crane. Generally, these cranes are able to travel on highways, eliminating the need for special equipment to transport the crane. When working on the jobsite, outriggers are extended horizontally from the chassis then vertically to level and stabilize the crane while stationary and hoisting. Many truck cranes have slow-travelling capability (a few miles per hour) while suspending a load.

Great care must be taken not to swing the load sideways from the direction of travel, as most anti-tipping stability then lies in the stiffness of the chassis suspension. Most cranes of this type also have moving counterweights for stabilization beyond that provided by the outriggers. Loads suspended directly aft are the most stable, since most of the weight of the crane acts as a counterweight. Factory-calculated charts (or electronic safeguards) are used by crane operators to determine the maximum safe loads for stationary (outriggered) work as well as (on-rubber) loads and travelling speeds.

Truck cranes range in lifting capacity from about 14.5 short tons (12.9 long tons; 13.2 t) to about 1,300 short tons (1,161 long tons; 1,179 t).

DSC00173 by Gary Douglas NZ

Sidelift crane

A sidelifter crane is a road-going truck or semi-trailer, able to hoist and transport ISO standard containers. Container lift is done with parallel crane-like hoists, which can lift a container from the ground or from a railway vehicle.

Royal Portbury Dock 2009 by brizzle born and bred

Rough terrain crane

A crane mounted on an undercarriage with four rubber tires that is designed for pick-and-carry operations and for off-road and “rough terrain” applications. Outriggers are used to level and stabilize the crane for hoisting.

These telescopic cranes are single-engine machines, with the same engine powering the undercarriage and the crane, similar to a crawler crane. In a rough terrain crane, the engine is usually mounted in the undercarriage rather than in the upper, as with crawler crane.

T000636_TADANOTadano Rough Terrain Crane TR151S by Minicar Shop

All terrain crane

A mobile crane with the necessary equipment to travel at speed on public roads, and on rough terrain at the job site using all-wheel and crab steering. AT‘s combine the roadability of Truck-mounted Cranes and the manoeuvrability of Rough Terrain Cranes.

AT’s have 2-9 axles and are designed for lifting loads up to 1,200 tonnes (1,323 ST; 1,181 LT).

The rebuilding of St Andrew's Church - 26/10/2009 by Chil7th

Crawler crane

A crawler is a crane mounted on an undercarriage with a set of tracks (also called crawlers) that provide stability and mobility. Crawler cranes range in lifting capacity from about 40 to 3,500 short tons (35.7 to 3,125.0 long tons; 36.3 to 3,175.1 t).

Crawler cranes have both advantages and disadvantages depending on their use. Their main advantage is that they can move around on site and perform each lift with little set-up, since the crane is stable on its tracks with no outriggers. In addition, a crawler crane is capable of traveling with a load. The main disadvantage is that they are very heavy, and cannot easily be moved from one job site to another without significant expense. Typically a large crawler must be disassembled and moved by trucks, rail cars or ships to its next location.

Rigging Up Yew Choon by Michaelallangrant

Railroad Crane

For more details on this topic, see Crane (railroad).

A railroad crane has flanged wheels for use on railroads. The simplest form is a crane mounted on a flatcar. More capable devices are purpose-built.

Different types of crane are used for maintenance work, recovery operations and freight loading in goods yards.

Railroad crane in New Castle Indiana by McIvory

Floating crane

Floating cranes are used mainly in bridge building and port construction, but they are also used for occasional loading and unloading of especially heavy or awkward loads on and off ships. Some floating cranes are mounted on a pontoon, others are specialized crane barges with a lifting capacity exceeding 10,000 short tons (8,929 long tons; 9,072 t) and have been used to transport entire bridge sections. Floating cranes have also been used to salvage sunken ships.

Crane vessels are often used in offshore construction. The largest revolving cranes can be found on SSCV Thialf, which has two cranes with a capacity of 7,100 tonnes (7,826 ST; 6,988 LT) each.

R34 neg 31 Mar 84 floating crane "Samson" by Scouse Hobbit

Aerial crane

Aerial crane or ‘Sky cranes’ usually are helicopters designed to lift large loads. Helicopters are able to travel to and lift in areas that are difficult to reach by conventional cranes. Helicopter cranes are most commonly used to lift units/loads onto shopping centers and highrises. They can lift anything within their lifting capacity, (cars, boats, swimming pools, etc.). They also perform disaster relief after natural disasters for clean-up, and during wild-fires they are able to carry huge buckets of water to extinguish fires.

Some aerial cranes, mostly concepts, have also used lighter-than air aircraft, such as airships.

HPIM2103 by uritcphotos

Tower crane

A tower crane rotates on its axis before lowering the lifting hook. Tower cranes are a modern form of balance crane that consist of the same basic parts. Fixed to the ground on a concrete slab (and sometimes attached to the sides of structures as well), tower cranes often give the best combination of height and lifting capacity and are used in the construction of tall buildings. The base is then attached to the mast which gives the crane its height. Further the mast is attached to the slewing unit (gear and motor) that allows the crane to rotate. On top of the slewing unit there are three main parts which are: the long horizontal jib (working arm), shorter counter-jib, and the operators cab.

The long horizontal jib is the part of the crane that carries the load. The counter-jib carries a counterweight, usually of concrete blocks, while the jib suspends the load to and from the center of the crane. The crane operator either sits in a cab at the top of the tower or controls the crane by radio remote control from the ground. In the first case the operator’s cab is most usually located at the top of the tower attached to the turntable, but can be mounted on the jib, or partway down the tower. The lifting hook is operated by the crane operator using electric motors to manipulate wire rope cables through a system of sheaves. The hook is located on the long horizontal arm to lift the load which also contains its motor.

In order to hook and unhook the loads, the operator usually works in conjunction with a signaller (known as a ‘dogger’, ‘rigger’ or ‘swamper’). They are most often in radio contact, and always use hand signals. The rigger or dogger directs the schedule of lifts for the crane, and is responsible for the safety of the rigging and loads. A tower crane is usually assembled by a telescopic jib (mobile) crane of greater reach (also see “self-erecting crane” below) and in the case of tower cranes that have risen while constructing very tall skyscrapers, a smaller crane (or derrick) will often be lifted to the roof of the completed tower to dismantle the tower crane afterwards.

The average fee to rent a 150-foot (46 m) crane is $60,000 for assembly and disassembly and an additional $15,000 per month. It is often claimed that a large fraction of the tower cranes in the world are in use in Dubai. The exact percentage remains an open question.

Manitowoc 4100W Tower Crane by salschiano

Self-erecting crane

Generally a type of tower crane, these cranes, also called self-assembling or “Kangaroo” cranes, lift themselves off the ground using jacks, allowing the next section of the tower to be inserted at ground level or lifted into place by the partially erected crane itself. They can thus be assembled without outside help, or can grow together with the building or structure they are erecting.

[flickr(‘self errecting crane’)]

Telescopic crane

A telescopic crane has a boom that consists of a number of tubes fitted one inside the other. A hydraulic or other powered mechanism extends or retracts the tubes to increase or decrease the total length of the boom. These types of booms are often used for short term construction projects, rescue jobs, lifting boats in and out of the water, etc. The relative compactness of telescopic booms make them adaptable for many mobile applications.

Note that while telescopic cranes are not automatically mobile cranes, many of them are. These are often truck-mounted.

C5202561 by cbmd

Hammerhead crane

The “hammerhead”, or giant cantilever, crane is a fixed-jib crane consisting of a steel-braced tower on which revolves a large, horizontal, double cantilever; the forward part of this cantilever or jib carries the lifting trolley, the jib is extended backwards in order to form a support for the machinery and counter-balancing weight. In addition to the motions of lifting and revolving, there is provided a so-called “racking” motion, by which the lifting trolley, with the load suspended, can be moved in and out along the jib without altering the level of the load. Such horizontal movement of the load is a marked feature of later crane design. These cranes are generally constructed in large sizes, up to 350 tons.

The design of hammerkran evolved first in Germany around the turn of the 19th century and was adopted and developed for use in British shipyards to support the battleship construction program from 1904 to 1914. The ability of the hammerhead crane to lift heavy weights was useful for installing large pieces of battleships such as armour plate and gun barrels. Giant cantilever cranes were also installed in naval shipyards in Japan and in the USA. The British Government also installed a giant cantilever crane at the Singapore Naval Base (1938) and later a copy of the crane was installed at Garden Island Naval Dockyard in Sydney (1951). These cranes provided repair support for the battle fleet operating far from Great Britain.

The principal engineering firm for giant cantilever cranes in the British Empire was Sir William Arrol & Co Ltd building 14. Of around 60 built across the world few remain; 7 in England and Scotland of about 15 worldwide.

The Titan Clydebank is one of the 4 Scottish cranes on the Clydebank and preserved as a tourist attraction.

_DSC9532.c2.. by AndyO.

Level luffing crane

Normally a crane with a hinged jib will tend to have its hook also move up and down as the jib moves (or luffs). A level luffing crane is a crane of this common design, but with an extra mechanism to keep the hook level when luffing.

Fremantle by Skazama

Gantry crane

A gantry crane has a hoist in a fixed machinery house or on a trolley that runs horizontally along rails, usually fitted on a single beam (mono-girder) or two beams (twin-girder). The crane frame is supported on a gantry system with equalized beams and wheels that run on the gantry rail, usually perpendicular to the trolley travel direction. These cranes come in all sizes, and some can move very heavy loads, particularly the extremely large examples used in shipyards or industrial installations. A special version is the container crane (or “Portainer” crane, named by the first manufacturer), designed for loading and unloading ship-borne containers at a port.

Mammoet SIWP Gantry Crane Lift 6 by Stephen SetteDucati

Overhead crane

Also known as a ‘suspended crane’, an overhead crane works very similar to a gantry crane but instead of the whole crane moving, only the hoist/trolley assembly moves in one direction along one or two fixed beams, often mounted along the side walls or on elevated columns in the assembly area of factory. Some of these cranes can lift very heavy loads.

Overhead crane looking not too bad by pimgmx

Deck crane

Located on the ships and boats, these are used for cargo operations or boat unloading and retrieval where no shore unloading facilities are available. Most are diesel-hydraulic or electric-hydraulic.

Crane ships by Edith Frost

Jib crane

A jib crane is a type of crane where a horizontal member (jib or boom), supporting a moveable hoist, is fixed to a wall or to a floor-mounted pillar. Jib cranes are used in industrial premises and on military vehicles. The jib may swing through an arc, to give additional lateral movement, or be fixed. Similar cranes, often known simply as hoists, were fitted on the top floor of warehouse buildings to enable goods to be lifted to all floors.

JIB Crane by elrina753

Bulk-handling crane

Bulk-handling cranes are designed from the outset to carry a shell grab or bucket, rather than using a hook and a sling. They are used for bulk cargoes, such as coal, minerals, scrap metal etc.

5-K Logistics Completes Texas Wartsila Project by GPLN

Loader crane

A loader crane (also called a knuckle-boom crane or articulating crane ) is a hydraulically-powered articulated arm fitted to a truck or trailer, and is used for loading/unloading the vehicle. The numerous jointed sections can be folded into a small space when the crane is not in use. One or more of the sections may be telescopic. Often the crane will have a degree of automation and be able to unload or stow itself without an operator’s instruction.

Unlike most cranes, the operator must move around the vehicle to be able to view his load; hence modern cranes may be fitted with a portable cabled or radio-linked control system to supplement the crane-mounted hydraulic control levers.

In the UK and Canada, this type of crane is often known colloquially as a “Hiab”, partly because this manufacturer invented the loader crane and was first into the UK market, and partly because the distinctive name was displayed prominently on the boom arm.

A rolloader crane is a loader crane mounted on a chassis with wheels. This chassis can ride on the trailer. Because the crane can move on the trailer, it can be a light crane, so the trailer is allowed to transport more goods.

Crane on a low-loader by akrabat

Stacker crane

A crane with a forklift type mechanism used in automated (computer controlled) warehouses (known as an automated storage and retrieval system (AS/RS)). The crane moves on a track in an aisle of the warehouse. The fork can be raised or lowered to any of the levels of a storage rack and can be extended into the rack to store and retrieve product. The product can in some cases be as large as an automobile. Stacker cranes are often used in the large freezer warehouses of frozen food manufacturers. This automation avoids requiring forklift drivers to work in below freezing temperatures every day.

Mel and Val on Cone duty--Wet and Windy Rupert Night by World through the Lens

 

Crane Hire Crane Manufacture

Mechanical Principles of Cranes

 

There are three major considerations in the design of cranes. First, the crane must be able to lift the weight of the load; second, the crane must not topple; third, the crane must not rupture.

 

Lifting capacity

Cranes illustrate the use of one or more simple machines to create mechanical advantage.

The lever. A balance crane contains a horizontal beam (the lever) pivoted about a point called the fulcrum. The principle of the lever allows a heavy load attached to the shorter end of the beam to be lifted by a smaller force applied in the opposite direction to the longer end of the beam. The ratio of the load’s weight to the applied force is equal to the ratio of the lengths of the longer arm and the shorter arm, and is called the mechanical advantage.

The pulley. A jib crane contains a tilted strut (the jib) that supports a fixed pulley block. Cables are wrapped multiple times round the fixed block and round another block attached to the load. When the free end of the cable is pulled by hand or by a winding machine, the pulley system delivers a force to the load that is equal to the applied force multiplied by the number of lengths of cable passing between the two blocks. This number is the mechanical advantage.

The hydraulic cylinder. This can be used directly to lift the load or indirectly to move the jib or beam that carries another lifting device.

Cranes, like all machines, obey the principle of conservation of energy. This means that the energy delivered to the load cannot exceed the energy put into the machine. For example, if a pulley system multiplies the applied force by ten, then the load moves only one tenth as far as the applied force. Since energy is proportional to force multiplied by distance, the output energy is kept roughly equal to the input energy (in practice slightly less, because some energy is lost to friction and other inefficiencies).

The same principle can operate in reverse. In case of some problem, the combination of heavy load and great height can accelerate small objects to tremendous speed (see trebuchet). Such projectiles can result in severe damage to nearby structures and people. Cranes can also get in chain reactions; the rupture of one crane may in turn take out nearby cranes. Cranes need to be watched carefully.

 

Stability

For stability, the sum of all moments about any point such as the base of the crane must equate to zero. In practice, the magnitude of load that is permitted to be lifted (called the “rated load” in the US) is some value less than the load that will cause the crane to tip (providing a safety margin).

Under US standards for mobile cranes, the stability-limited rated load for a crawler crane is 75% of the tipping load. The stability-limited rated load for a mobile crane supported on outriggers is 85% of the tipping load. These requirements, along with additional safety-related aspects of crane design, are established by the American Society of Mechanical Engineers in the volume ASME B30.5-2007 Mobile and Locomotive Cranes.

Standards for cranes mounted on ships or offshore platforms are somewhat stricter because of the dynamic load on the crane due to vessel motion. Additionally, the stability of the vessel or platform must be considered.

For stationary pedestal or kingpost mounted cranes, the moment created by the boom, jib, and load is resisted by the pedestal base or kingpost. Stress within the base must be less than the yield stress of the material or the crane will fail.

Crane Hire
Cranes
Cranes
Cranes

 

Crane Use

Ancient Greece

The crane for lifting heavy loads was invented by the Ancient Greeks in the late 6th century BC. The archaeological record shows that no later than c.515 BC distinctive cuttings for both lifting tongs and lewis irons begin to appear on stone blocks of Greek temples. Since these holes point at the use of a lifting device, and since they are to be found either above the center of gravity of the block, or in pairs equidistant from a point over the center of gravity, they are regarded by archaeologists as the positive evidence required for the existence of the crane.

The introduction of the winch and pulley hoist soon lead to a widespread replacement of ramps as the main means of vertical motion. For the next two hundred years, Greek building sites witnessed a sharp drop in the weights handled, as the new lifting technique made the use of several smaller stones more practical than of fewer larger ones. In contrast to the archaic period with its tendency to ever-increasing block sizes, Greek temples of the classical age like the Parthenon invariably featured stone blocks weighing less than 15-20 metric tons. Also, the practice of erecting large monolithic columns was practically abandoned in favour of using several column drums.

Although the exact circumstances of the shift from the ramp to the crane technology remain unclear, it has been argued that the volatile social and political conditions of Greece were more suitable to the employment of small, professional construction teams than of large bodies of unskilled labour, making the crane more preferable to the Greek polis than the more labour-intensive ramp which had been the norm in the autocratic societies of Egypt or Assyria.

The first unequivocal literary evidence for the existence of the compound pulley system appears in the Mechanical Problems (Mech. 18, 853a32-853b13) attributed to Aristotle (384-322 BC), but perhaps composed at a slightly later date. Around the same time, block sizes at Greek temples began to match their archaic predecessors again, indicating that the more sophisticated compound pulley must have found its way to Greek construction sites by then.

 

Ancient Rome

The heyday of the crane in ancient times came during the Roman Empire, when construction activity soared and buildings reached enormous dimensions. The Romans adopted the Greek crane and developed it further. We are relatively well informed about their lifting techniques, thanks to rather lengthy accounts by the engineers Vitruvius (De Architectura 10.2, 1-10) and Heron of Alexandria (Mechanica 3.2-5). There are also two surviving reliefs of Roman treadwheel cranes, with the Haterii tombstone from the late first century AD being particularly detailed.

The simplest Roman crane, the trispastos, consisted of a single-beam jib, a winch, a rope, and a block containing three pulleys. Having thus a mechanical advantage of 3:1, it has been calculated that a single man working the winch could raise 150 kg (3 pulleys x 50 kg = 150), assuming that 50 kg represent the maximum effort a man can exert over a longer time period. Heavier crane types featured five pulleys (pentaspastos) or, in case of the largest one, a set of three by five pulleys (Polyspastos) and came with two, three or four masts, depending on the maximum load. The polyspastos, when worked by four men at both sides of the winch, could already lift 3000 kg (3 ropes x 5 pulleys x 4 men x 50 kg = 3000 kg). In case the winch was replaced by a treadwheel, the maximum load even doubled to 6000 kg at only half the crew, since the treadwheel possesses a much bigger mechanical advantage due to its larger diameter. This meant that, in comparison to the construction of the Egyptian Pyramids, where about 50 men were needed to move a 2.5 ton stone block up the ramp (50 kg per person), the lifting capability of the Roman polyspastos proved to be 60 times higher (3000 kg per person).

However, numerous extant Roman buildings which feature much heavier stone blocks than those handled by the polyspastos indicate that the overall lifting capability of the Romans went far beyond that of any single crane. At the temple of Jupiter at Baalbek, for instance, the architrave blocks weigh up to 60 tons each, and one corner cornice block even over 100 tons, all of them raised to a height of about 19 m. In Rome, the capital block of Trajan’s Column weighs 53.3 tons, which had to be lifted to a height of about 34 m (see construction of Trajan’s Column).

It is assumed that Roman engineers lifted these extraordinary weights by two measures (see picture below for comparable Renaissance technique): First, as suggested by Heron, a lifting tower was set up, whose four masts were arranged in the shape of a quadrangle with parallel sides, not unlike a siege tower, but with the column in the middle of the structure (Mechanica 3.5). Second, a multitude of capstans were placed on the ground around the tower, for, although having a lower leverage ratio than treadwheels, capstans could be set up in higher numbers and run by more men (and, moreover, by draught animals).[7] This use of multiple capstans is also described by Ammianus Marcellinus (17.4.15) in connection with the lifting of the Lateranense obelisk in the Circus Maximus (ca. 357 AD). The maximum lifting capability of a single capstan can be established by the number of lewis iron holes bored into the monolith. In case of the Baalbek architrave blocks, which weigh between 55 and 60 tons, eight extant holes suggest an allowance of 7.5 ton per lewis iron, that is per capstan. Lifting such heavy weights in a concerted action required a great amount of coordination between the work groups applying the force to the capstans.

 

Middle Ages

During the High Middle Ages, the treadwheel crane was reintroduced on a large scale after the technology had fallen into disuse in western Europe with the demise of the Western Roman Empire. The earliest reference to a treadwheel (magna rota) reappears in archival literature in France about 1225, followed by an illuminated depiction in a manuscript of probably also French origin dating to 1240. In navigation, the earliest uses of harbor cranes are documented for Utrecht in 1244, Antwerp in 1263, Brugge in 1288 and Hamburg in 1291, while in England the treadwheel is not recorded before 1331.

Generally, vertical transport could be done more safely and inexpensively by cranes than by customary methods. Typical areas of application were harbors, mines, and, in particular, building sites where the treadwheel crane played a pivotal role in the construction of the lofty Gothic cathedrals. Nevertheless, both archival and pictorial sources of the time suggest that newly introduced machines like treadwheels or wheelbarrows did not completely replace more labor-intensive methods like ladders, hods and handbarrows. Rather, old and new machinery continued to coexist on medieval construction sites and harbors.

Apart from treadwheels, medieval depictions also show cranes to be powered manually by windlasses with radiating spokes, cranks and by the 15th century also by windlasses shaped like a ship’s wheel. To smooth out irregularities of impulse and get over ‘dead-spots’ in the lifting process flywheels are known to be in use as early as 1123.

The exact process by which the treadwheel crane was reintroduced is not recorded, although its return to construction sites has undoubtedly to be viewed in close connection with the simultaneous rise of Gothic architecture. The reappearance of the treadwheel crane may have resulted from a technological development of the windlass from which the treadwheel structurally and mechanically evolved. Alternatively, the medieval treadwheel may represent a deliberate reinvention of its Roman counterpart drawn from Vitruvius’ De architectura which was available in many monastic libraries. Its reintroduction may have been inspired, as well, by the observation of the labor-saving qualities of the waterwheel with which early treadwheels shared many structural similarities.

 

Structure and placement

The medieval treadwheel was a large wooden wheel central shaft with a treadway wide enough for two workers walking side by side. While the earlier ‘compass-arm’ wheel had spokes directly driven into the central shaft, the more advanced ‘clasp-arm’ type featured arms arranged as chords to the wheel rim, giving the possibility of using a thinner shaft and providing thus a greater mechanical advantage.

Contrary to a popularly held belief, cranes on medieval building sites were neither placed on the extremely lightweight scaffolding used at the time nor on the thin walls of the Christian churches which were incapable of supporting the weight of both hoisting machine and load. Rather, cranes were placed in the initial stages of construction on the ground, often within the building. When a new floor was completed, and massive tie beams of the roof connected the walls, the crane was dismantled and reassembled on the roof beams from where it was moved from bay to bay during construction of the vaults. Thus, the crane ‘grew’ and ‘wandered’ with the building with the result that today all extant construction cranes in England are found in church towers above the vaulting and below the roof, where they remained after building construction for bringing material for repairs aloft.

Less frequently, medieval illuminations also show cranes mounted on the outside of walls with the stand of the machine secured to putlogs.

 

Mechanics and operation

In contrast to modern cranes, medieval cranes and hoists – much like their counterparts in Greece and Rome – were primarily capable of a vertical lift, and not used to move loads for a considerable distance horizontally as well. Accordingly, lifting work was organized at the workplace in a different way than today. In building construction, for example, it is assumed that the crane lifted the stone blocks either from the bottom directly into place, or from a place opposite the centre of the wall from where it could deliver the blocks for two teams working at each end of the wall. Additionally, the crane master who usually gave orders at the treadwheel workers from outside the crane was able to manipulate the movement laterally by a small rope attached to the load. Slewing cranes which allowed a rotation of the load and were thus particularly suited for dockside work appeared as early as 1340. While ashlar blocks were directly lifted by sling, lewis or devil’s clamp (German Teufelskralle), other objects were placed before in containers like pallets, baskets, wooden boxes or barrels.

It is noteworthy that medieval cranes rarely featured ratchets or brakes to forestall the load from running backward. This curious absence is explained by the high friction force exercised by medieval treadwheels which normally prevented the wheel from accelerating beyond control.

 

Harbor usage

According to the “present state of knowledge” unknown in antiquity, stationary harbor cranes are considered a new development of the Middle Ages. The typical harbor crane was a pivoting structure equipped with double treadwheels. These cranes were placed docksides for the loading and unloading of cargo where they replaced or complemented older lifting methods like see-saws, winches and yards.

Two different types of harbor cranes can be identified with a varying geographical distribution: While gantry cranes which pivoted on a central vertical axle were commonly found at the Flemish and Dutch coastside, German sea and inland harbors typically featured tower cranes where the windlass and treadwheels were situated in a solid tower with only jib arm and roof rotating. Interestingly, dockside cranes were not adopted in the Mediterranean region and the highly developed Italian ports where authorities continued to rely on the more labor-intensive method of unloading goods by ramps beyond the Middle Ages.

Unlike construction cranes where the work speed was determined by the relatively slow progress of the masons, harbor cranes usually featured double treadwheels to speed up loading. The two treadwheels whose diameter is estimated to be 4 m or larger were attached to each side of the axle and rotated together. Their capacity was 2–3 tons which apparently corresponded to the customary size of marine cargo.Today, according to one survey, fifteen treadwheel harbor cranes from pre-industrial times are still extant throughout Europe. Some harbour cranes were specialised at mounting masts to newly built sailing ships, such as in Gdańsk, Cologne and Bremen. Beside these stationary cranes, floating cranes which could be flexibly deployed in the whole port basin came into use by the 14th century.

 

Renaissance

A lifting tower similar to that of the ancient Romans was used to great effect by the Renaissance architect Domenico Fontana in 1586 to relocate the 361 t heavy Vatican obelisk in Rome. From his report, it becomes obvious that the coordination of the lift between the various pulling teams required a considerable amount of concentration and discipline, since, if the force was not applied evenly, the excessive stress on the ropes would make them rupture.

 

Early modern age

Cranes were used domestically in the 17th and 18th century. The chimney or fireplace crane was used to swing pots and kettles over the fire and the height was adjusted by a trammel.

Crane Hire & Crane Manufacturers AU – Hire or Buy Cranes.
Crane Hire

Australian Cranes

Crane
Cranes AU
Crane Manufacturers Australia
Crane Manufacturers
Crane

Treadwheel Crane

 

A 13th century drawing of a treadwheel crane

A treadwheel crane (magna rola) is a wooden, human powered, hoisting and lowering device. It was primarily used during Roman times and the Middle Ages in the building of castles and cathedrals. The often heavy charge is lifted as the individual inside the treadwheel crane walks. The rope attached to a pulley is turned onto a spindle by the rotation of the wheel thus allowing the device to hoist or lower the affixed pallet.

 

 

 

 

Ancient Rome

Reconstruction of a Roman treadwheel crane, the Polyspastos, at Bonn, Germany

The Roman Polyspastos crane, when worked by four men at both sides of the winch, could lift 3000 kg. In case the winch was replaced by a treadwheel, the maximum load even doubled to 6000 kg at only half the crew, since the treadwheel possesses a much bigger mechanical advantage due to its larger diameter. This meant that, in comparison to the construction of the Egyptian Pyramids, where about 50 men were needed to move a 2.5 ton stone block up the ramp (50 kg per person), the lifting capability of the Roman Polyspastos proved to be 60 times higher (3000 kg per person). There are two surviving reliefs of Roman treadwheel cranes, the Haterii tombstone from the late first century AD being particularly detailed.

For even larger weights of up to 100 t, Roman engineers set up a wooden lifting tower, a rectangular trestle which was so constructed that the column could be lifted upright in the middle of the structure by the means of human and animal-powered capstans placed on the ground around the tower.

 

Middle Ages

Pieter Bruegel’s construction of The Tower of Babel (Bruegel) featuring a double treadwheel crane

During the High Middle Ages, the treadwheel crane was reintroduced on a large scale after the technology had fallen into disuse in western Europe with the demise of the Western Roman Empire. The earliest reference to a treadwheel (magna rota) reappears in archival literature in France about 1225, followed by an illuminated depiction in a manuscript of probably also French origin dating to 1240. In navigation, the earliest uses of harbor cranes are documented for Utrecht in 1244, Antwerp in 1263, Brugge in 1288 and Hamburg in 1291, while in England the treadwheel is not recorded before 1331.

Generally, vertical transport could be done more safely and inexpensively by cranes than by customary methods. Typical areas of application were harbors, mines, and, in particular, building sites where the treadwheel crane played a pivotal role in the construction of the lofty Gothic cathedrals. Nevertheless, both archival and pictorial sources of the time suggest that newly introduced machines like treadwheels or wheelbarrows did not completely replace more labor-intensive methods like ladders, hods and handbarrows. Rather, old and new machinery continued to coexist on medieval construction sites and harbors.

Apart from treadwheels, medieval depictions also show cranes to be powered manually by windlasses with radiating spokes, cranks and by the 15th century also by windlasses shaped like a ship’s wheel. To smooth out irregularities of impulse and get over ‘dead-spots’ in the lifting process flywheels are known to be in use as early as 1123.

The exact process by which the treadwheel crane was reintroduced is not recorded, although its return to construction sites has undoubtedly to be viewed in close connection with the simultaneous rise of Gothic architecture. The reappearance of the treadwheel crane may have resulted from a technological development of the windlass from which the treadwheel structurally and mechanically evolved. Alternatively, the medieval treadwheel may represent a deliberate reinvention of its Roman counterpart drawn from Vitruvius’ De architectura which was available in many monastic libraries. Its reintroduction may have been inspired, as well, by the observation of the labor-saving qualities of the waterwheel with which early treadwheels shared many structural similarities.

 

Structure and placement

Single treadwheel crane working from top of the building

The medieval treadwheel was a large wooden wheel turning around a central shaft with a treadway wide enough for two workers walking side by side. While the earlier ‘compass-arm’ wheel had spokes directly driven into the central shaft, the more advanced ‘clasp-arm’ type featured arms arranged as chords to the wheel rim, giving the possibility of using a thinner shaft and providing thus a greater mechanical advantage.

Contrary to a popularly held belief, cranes on medieval building sites were neither placed on the extremely lightweight scaffolding used at the time nor on the thin walls of the Gothic churches which were incapable of supporting the weight of both hoisting machine and load. Rather, cranes were placed in the initial stages of construction on the ground, often within the building. When a new floor was completed, and massive tie beams of the roof connected the walls, the crane was dismantled and reassembled on the roof beams from where it was moved from bay to bay during construction of the vaults. Thus, the crane ‘grew’ and ‘wandered’ with the building with the result that today all extant construction cranes in England are found in church towers above the vaulting and below the roof, where they remained after building construction for bringing material for repairs aloft.

Less frequently, medieval illuminations also show cranes mounted on the outside of walls with the stand of the machine secured to putlogs.

 

 

Mechanics and operation

Reconstructed gantry crane of Brugge operated by two lateral treadwheels

In contrast to modern cranes, medieval cranes and hoists – much like their counterparts in Greece and Rome – were primarily capable of a vertical lift, and not used to move loads for a considerable distance horizontally as well. Accordingly, lifting work was organized at the workplace in a different way than today. In building construction, for example, it is assumed that the crane lifted the stone blocks either from the bottom directly into place, or from a place opposite the centre of the wall from where it could deliver the blocks for two teams working at each end of the wall. Additionally, the crane master who usually gave orders at the treadwheel workers from outside the crane was able to manipulate the movement laterally by a small rope attached to the load. Slewing cranes which allowed a rotation of the load and were thus particularly suited for dockside work appeared as early as 1340. While ashlar blocks were directly lifted by sling, lewis or devil’s clamp (German Teufelskralle), other objects were placed before in containers like pallets, baskets, wooden boxes or barrels.

It is noteworthy that medieval cranes rarely featured ratchets or brakes to forestall the load from running backward. This curious absence is explained by the high friction force exercised by medieval treadwheels which normally prevented the wheel from accelerating beyond control.

 

Harbor usage

Tower crane at the inland harbour of Trier from 1413

According to the “present state of knowledge” unknown in antiquity, stationary harbor cranes are considered a new development of the Middle Ages. The typical harbor crane was a pivoting structure equipped with double treadwheels. These cranes were placed docksides for the loading and unloading of cargo where they replaced or complemented older lifting methods like see-saws, winches and yards.

Two different types of harbor cranes can be identified with a varying geographical distribution: While gantry cranes which pivoted on a central vertical axle were commonly found at the Flemish and Dutch coastside, German sea and inland harbors typically featured tower cranes where the windlass and treadwheels were situated in a solid tower with only jib arm and roof rotating. Interestingly, dockside cranes were not adopted in the Mediterranean region and the highly developed Italian ports where authorities continued to rely on the more labor-intensive method of unloading goods by ramps beyond the Middle Ages.

Unlike construction cranes where the work speed was determined by the relatively slow progress of the masons, harbor cranes usually featured double treadwheels to speed up loading. The two treadwheels whose diameter is estimated to be 4 m or larger were attached to each side of the axle and rotated together. Their capacity was 2–3 tons which apparently corresponded to the customary size of marine cargo. Today, according to one survey, fifteen treadwheel harbor cranes from pre-industrial times are still extant throughout Europe. Some harbour cranes were specialised at mounting masts to newly built sailing ships, such as in Danzig, Cologne and Bremen. Beside these stationary cranes, floating cranes which could be flexibly deployed in the whole port basin came into use by the 14th century.

 

 

Crane History

The first construction cranes were invented by the Ancient Greeks and were powered by men or beasts of burden, such as donkeys. These cranes were used for the construction of tall buildings. Larger cranes were later developed, employing the use of human treadwheels, permitting the lifting of heavier weights. In the High Middle Ages, harbour cranes were introduced to load and unload ships and assist with their construction – some were built into stone towers for extra strength and stability. The earliest cranes were constructed from wood, but cast iron and steel took over with the coming of the Industrial Revolution.

For many centuries, power was supplied by the physical exertion of men or animals, although hoists in watermills and windmills could be driven by the harnessed natural power. The first ‘mechanical’ power was provided by steam engines, the earliest steam crane being introduced in the 18th or 19th century, with many remaining in use well into the late 20th century. Modern cranes usually use internal combustion engines or electric motors and hydraulic systems to provide a much greater lifting capability than was previously possible, although manual cranes are still utilised where the provision of power would be uneconomic.

Cranes exist in an enormous variety of forms – each tailored to a specific use. Sizes range from the smallest jib cranes, used inside workshops, to the tallest tower cranes, used for constructing high buildings. For a while, mini – cranes are also used for constructing high buildings, in order to facilitate constructions by reaching tight spaces. Finally, we can find larger floating cranes, generally used to build oil rigs and salvage sunken ships. This article also covers lifting machines that do not strictly fit the above definition of a crane, but are generally known as cranes, such as stacker cranes and loader cranes.